Part Number Hot Search : 
UGF2B 005M2 TK14C 24C25 SC1602J DS1371 BCM3419 04597
Product Description
Full Text Search
 

To Download CXD2720Q Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 CXD2720Q
Single-Chip Digital Signal Processor for Karaoke
Description The CXD2720Q is a digital signal processor LSI for Karaoke, suitable for use in LD/CD/CD-G/video CD and the like. A large capacity DRAM and AD/DA converters are built in, and Karaoke functions such as key control, microphone echo and voice canceling are contained on a single chip. Features * 3-channel 1-bit AD converter and decimation filter S/N ratio: 88 dB THD + N: 0.016% Filter pass band ripple: less than 0.5dB Filter stop band attenuation: less than -41dB (all characteristics are typical values) * 2-channel 1-bit DA converter and oversampling filter S/N ratio: 98dB THD + N: 0.006% Filter pass band ripple: less than 0.2dB Filter stop band attenuation: less than -41dB (all characteristics are typical values) * In addition to analog input/output, 2-channel input/ 2-channel output of digital input/output are provided. The interface also supports a variety of formats. * 128K-bit DRAM for key control and microphone echo processing Functions * Key controller pitch setting can be varied to a maximum of 1 octave with a precision of 14 bits * Microphone echo delay time can be varied to a maximum of 185ms (when Fs = 44.1kHz) * Voice canceller supports settings other than center by the panpot volume * Voice parametric equalizer * Voice pitch shifter * Mixing function to support sound multiplexing software * Digital de-emphasis function 100 pin QFP (Plastic)
Structure Silicon gate CMOS Applications Equipment having Karaoke function, such as LD/CD, compact music center, video games, etc. Absolute Maximum Ratings * * * * * (Ta = 25C, VSS = 0V) Supply voltage VDD VSS - 0.5 to +7.0 V Input voltage VI VSS - 0.5 to VDD + 0.5 V Output voltage VO VSS - 0.5 to VDD + 0.5 V Operating temperature Topr -20 to +75 C Storage temperature Tstg -55 to +150 C
Recommended Operating Conditions * Supply voltage VDD 4.5 to 5.5 (5.0 typ.) V * Operating temperature Ta -20 to +75 C Input/Output Capacitance 9 (max.) pF * Input capacitance CIN * Output capacitance COUT 11 (max.) pF * Input/output capacitance CI/O 11(max.) pF Measurement conditions: VDD = VI = 0V, F = 1MHz
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
-1-
E96426-ST
CXD2720Q
Block Diagram
128K bit DELAY RAM
RVDT 3 SCK XLAT 4 5 MICRO COMPUTER I/F DAC1 25 AO1P 26 AO1N 39 AO2N 40 AO2P 29 AIN1
REDY 6 TRDT 7
DAC2 DSP
LRCK 88 BCK 87 SI 86 SO 12 XWO 8 SERIAL DATA I/F
ADC1
ADC2
36 AIN2
ADC3 CLOCK GENERATOR /TIMING CIRCUIT
22 AIN3
33
32
82
XTLI XTLO BFOT
Pin Configuration
VDD2 VSS6 VSS5 VSS4 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC
50 NC 49 NC 48 47 NC NC 46 NC 45 44 NC NC 43 VDD1 42 VSS3 41 AVS5 40 AO2P 39 AO2N 38 AVD5 37 AVD2 36 AIN2 35 AVS2 34 XVSS 33 XTLI 32 XTLO 31 XVDD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 X768 81 BFOT 82 INVI 83 NC 84 NC 85 SI 86 BCK 87 LRCK 88 XMST 89 VSS7 90 NC 91 NC 92 NC 93 NC 94 NC 95 NC 96 NC 97 NC 98 VDD3 99 AVD0 100
REDY
XLAT
TST3
AVD3
VDD0
TST2
RVDT
XRST
TST1
AVS3
AO1N
TST0
XWO
TRDT
AO1P
XS24
TST5
AVS4
AVS1
VSS1
VSS0
VSS2
AIN3
AIN1
SCK
-2-
TST4
AVD4
AVD1
AVS0
SO
CXD2720Q
Pin Description Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Symbol AVS0 VSS0 RVDT SCK XLAT REDY TRDT XWO XRST VSS1 VDD0 SO XS24 TST0 TST1 TST2 TST3 TST4 TST5 VSS2 AVS3 AIN3 AVD3 AVD4 AO1P AO1N AVS4 AVS1 AIN1 AVD1 XVDD XTLO XTLI XVSS AVS2 I/O -- -- I I I O O I I -- -- O I I I I I I I -- -- I -- -- O O -- -- I -- -- O I -- -- DRAM digital GND. Digital GND. Data input for microcomputer interface. Shift clock input for microcomputer interface. Latch input for microcomputer interface. Transmission enabling signal output for microcomputer interface. Transmission prohibited when Low. Serial data output for microcomputer interface. Window open input for synchronization. Normally High. System reset input. Resets when Low. Digital GND. Digital power supply. 1-sampling 2-channel serial data output. Serial data 24-/32-bit slot selection. 24-bit slot when Low. (valid for slave mode) Test pin. Normally set Low. Test pin. Normally set Low. Test pin. Normally set Low. Test pin. Normally set Low. Test pin. Normally set Low. Test pin. Normally set Low. Digital GND. CH3 AD converter GND. CH3 AD converter analog input (for microphone input). CH3 AD converter power supply. CH1 DA converter power supply. CH1 DA converter analog positive phase output. CH1 DA converter analog reversed phase output. CH1 DA converter GND. CH1 AD converter GND. CH1 AD converter analog input. CH1 AD converter power supply. Digital power supply for master clock. Crystal oscillator circuit output. Crystal oscillator circuit input. Digital GND for master clock. CH2 AD converter GND. Description
-3-
CXD2720Q
Pin No. 36 37 38 39 40 41 42 43
Symbol AIN2 AVD2 AVD5 AO2N AO2P AVS5 VSS3 VDD1
I/O I -- -- O O -- -- -- CH2 AD converter analog input. CH2 AD converter power supply. CH2 DA converter power supply.
Description
CH2 DA converter analog reversed phase output. CH2 DA converter analog positive phase output. CH2 DA converter GND. Digital GND. Digital power supply. Normally open.
44 to 52 NC 53 VSS4 --
Digital GND. Normally open.
54 to 68 NC 69 70 VSS5 VDD2 -- --
Digital GND. Digital power supply. Normally open.
71 to 79 NC 80 81 82 83 84 85 86 87 88 89 90 VSS6 X768 BFOT INVI NC NC SI BCK LRCK XMST VSS7 I I/O I/O I -- -- I O I
Digital GND. Test input pin. Normally set Low. Clock, frequency-divider output (384fs). Test pin. Normally set Low. Normally open. Normally open. 1-sampling 2-channel serial data input. Serial bit transmission clock for serial input/output data SI and SO. Sampling frequency clock for serial input/output data SI and SO. BCK, LRCK master/slave mode switching input. Master mode when Low. Digital GND. Normally open.
91 to 98 NC 99 100 VDD3 AVD0 -- --
Digital power supply. Digital power supply for DRAM.
-4-
CXD2720Q
DC Characteristics (AVD0 to 5 = XVDD = VDD0 to 3 = 5V 10%, AVS0 to 5 = XVSS = VSS0 to 7 = 0V, Ta = -20 to +75C) Item Input voltage (1) Symbol High level VIH Low level VIL Input voltage (2) Input voltage (3) High level VIH Low level VIL VIN Analog input IOH = -2.0mA IOL = 4.0mA IOH = -6.0mA IOL = 4.0mA IOH = -12.0mA IOL = 12.0mA VIH = VDD, VSS VIH = VDD, VSS VIH = VDD, VSS -10 -40 -40 250k fs = 44.1kHz 1M 79 VDD/2 VDD/2 10 40 40 2.5M 90 VDD - 0.8 0.4 VSS VDD - 0.8 0.4 0.8VDD 0.2VDD VDD Conditions Min. 0.7VDD 0.3VDD Typ. Max. Unit Applicable pins 1, 4, 5 V V V V V V V V V V V A A A mA 1, 4, 5 3 3 2 6, 7, 8 6, 7, 8, 9 10 10 11 11 1, 3, 5 4 8, 9 Resistance between 5 and 11.
Output voltage High level VOH (1) Low level VOL Output voltage High level VOH (2) Low level VOL Output voltage High level VOH (3) Low level VOL Input leak current (1) Input leak current (2) Output leak current Feedback resistance Current consumption II II IOZ RFB IDD
1 RVDT, SCK, XLAT, XWO, XRST, XS24, TST0 to TST5, X768, SI, XMST 2 AIN1, AIN2, AIN3 3 INVI 4 During input to bidirectional pins BCK, LRCK 5 XTLI 6 During output from bidirectional pins BCK, LRCK 7 SO, BFOT 8 TRDT 9 REDY 10 AO1P, AO1N, AO2N, AO2P 11 XTLO
-5-
CXD2720Q
AC Characteristics (AVD0 to 5 = XVDD = VDD0 to 3 = 5V10%, AVS0 to 5 = XVSS = VSS0 to 7 = 0V, Ta = -20 to +75C) Serial Audio Interface Timing [Slave mode]
BCK tSSI SI tDSSO SO tHLR LRCK tSLR
0.7VDD 0.3VDD 0.7VDD 0.3VDD
tHSI
0.7VDD 0.3VDD
[Master mode]
BCK tDLR LRCK tDMSO SO
Item SI setup time SI hold time SO delay time LRCK setup time LRCK hold time LRCK delay time SO delay time
Symbol
Conditions Slave mode Slave mode Slave mode, CL = 60pF Slave mode Slave mode Master mode, CL = 120pF Master mode, CL = 60pF
Min. 20 40
Max.
Unit ns ns
tSSI tHSI tDSSO tSLR tHLR tDLR tDMSO
50 20 40 50 100
ns ns ns ns ns
-6-
CXD2720Q
Microcomputer Interface Timing [Write] * Transmission timing for address section, transmission mode section, data section LSB
RVDT Address LSB tSWL tSWH Mode MSB tDS tDH
0.7VDD 0.3VDD
Data LSB
Data MSB
SCK tSLP XLAT tLWH REDY
0.7VDD 0.3VDD
tLSD
0.7VDD 0.3VDD
tLWL
* Transmission timing from data section MSB to address section and transmission mode section
RVDT
Data MSB tSS
Address LSB
Mode MSB
0.7VDD 0.3VDD
SCK tSLD XLAT tSBD tBSP REDY tLDR
0.7VDD 0.3VDD
0.7VDD 0.3VDD
tRLP
[Read] * Transmission timing for address section and transmission mode section is the same as for write.
RVDT
Mode MSB tSS
Address LSB
SCK tSLP XLAT tLWL REDY tLDN TRDT tSDD Data LSB Data MSB tLBD tRSDP
0.7VDD 0.3VDD
0.7VDD 0.3VDD
0.7VDD 0.3VDD
-7-
CXD2720Q
Item RVDT setup time relative to SCK rise RVDT data hold time from SCK rise SCK Low level width SCK High level width XLAT Low level width XLAT High level width SCK rise preceding time relative to XLAT rise SCK rise wait time relative to XLAT rise Delay time to REDY fall relative to XLAT rise. Delay time to REDY fall relative to SCK rise REDY fall preceding time relative to SCK rise REDY rise preceding time relative to XLAT rise REDY rise preceding time relative to SCK fall XLAT fall wait time relative to SCK rise XLAT fall delay time relative to REDY fall Delay time from XLAT rise until TRDT data becomes active Delay time from SCK rise until TRDT data becomes high-impedance Delay time from SCK fall until TRDT data is verified CK rise wait time for next transmission
Symbol
Min. 20 1t + 20 1t + 20 1t + 20 1t + 20 1t + 20 20 3t + 20
Max.
Unit ns ns ns ns ns ns ns ns
tDS tDH tSWL tSWH tLWL tLWH tSLP tLSD tLBD tSBD tBSP tRLP tRSDP tSLD tLDR tLDN tSDF tSDD tSS
3t + 50 4t + 50 20 20 20 3t + 20 20 3t + 80 3t + 80 2t + 70 2t + 40
ns ns ns ns ns ns ns ns ns ns ns
Note 1) t is the cycle of 1/2 the clock frequency applied to the XTLI pin. (384fs) Note 2) REDY and TRDT pins are the values for CL = 60pF.
-8-
CXD2720Q
Analog Characteristics (AVD0 to 5 = VDD0 to 3 = XVDD = 5.0V, AVS0 to 5 = VSS0 to 7 = XVSS = 0.0V, Ta = 25C, DSP: each function = OFF, gain = 1) [1] ADC + DAC connection total characteristics The measurement circuit in Figure 1-1 is used. Unless otherwise indicated, the measurement conditions are as given below. * Input signal ...1.0Vrms, 1kHz * fs....................44.1kHz * Rin .................0 Item S/N ratio THD + N Dynamic range Channel separation Level difference between channels Analog full-scale input level ADC input impedance Analog current consumption Measurement conditions 1.0Vrms, EIAJ (with "A" weighting filter) 1.0Vrms, EIAJ 0.5Vrms, EIAJ EIAJ Only ADC characteristics using DAC1, EIAJ Only ADC characteristics using DAC1 Rin = 0 Rin = 22k Min. 80 Typ. 88 0.016 0.012 92 108 0.05 1.26 2.06 34.6 21 Vrms k mA 0.03 % dB dB dB Max. Unit dB
1 Analog input level which outputs digital full scale. An optional analog input signal level Vin (Vrms) of 1.26Vrms or more can be set in digital full scale by the measurement circuit external resistor Rin. The calculation formula for external resistor Rin is: Rin = 27.5 x Vin - 34.6 [k]......(1) However, THD + N characteristics deteriorate for full-scale output as shown in Graph 1, so use of up to 80% (when Rin = 0, 0.8 x 1.26 (Vrms) = 1.0 (Vrms) "analog full scale") of the analog signal level is recommended for digital full-scale output. In this case, the Rin calculation formula is the same as formula (1), except that Vin becomes 1.25 x Vin. Note that this change causes the output level after ADC + DAC to change. Most of the above specifications are measurement values for analog full scale.
-9-
CXD2720Q
[2] DAC unit characteristics Use the measurement circuit in Figure 1-2. Unless otherwise specified, the measurement conditions are as follows. * Input signal ....0dB, 1kHz, 16 bit * fs....................44.1kHz Item S/N ratio THD + N Dynamic range Channel separation Level difference between channels Output level Measurement conditions EIAJ (with "A" weighting filter) EIAJ (0dB) EIAJ (-1dB) EIAJ (-60dB) EIAJ EIAJ EIAJ (Measure at OUT in Figure 1-2.) Min. Typ. 98 0.006 0.004 98 120 0.05 2.0 Max. Unit dB % dB dB dB Vrms
1.00
THD + N [%]
0.10
0.01
(Rin = 0) Digital full scale Analog full scale
-60
-50
-40
-30
-20
-10
0 10 (1Vrms)
Analog input level [dBV]
Graph 1.
- 10 -
CXD2720Q
CXD2720Q (Master mode) 150p 8200p 2.2k 820p 12k 22k 39k 150p
10 Rin Vin AINx AOxN 1M AOxP
12k
22k 330p
39k
2.2k
OUT
Figure 1-1. ADC + DAC Measurement Circuit Diagram
CXD2720Q (Slave mode) 768fs 48fs fs DATA (fs = 44.1kHz) XTLI BCK 12k LRCK AOxN 330p SI AOxP 12k 22k 39k 150p 820p 22k 39k 2.2k 150p 8200p 2.2k
OUT
Figure 1-2. DAC Measurement Circuit Diagram
- 11 -
CXD2720Q
Description of Functions 1. Master/Slave Modes [Relevant pins] XMST, LRCK, BCK When connecting multiple CXD2720Qs, or when using as a pair with a D/A converter such as the CXD2558M, one of the CXD2720Q should be in master mode to supply LRCK and BCK. The clock applied to LRCK and BCK in slave mode must be synchronized to either the crystal oscillator clock of the XTLI and XTLO pins or the external clock input from the XTLI pin XMST H L Mode Slave mode Master mode LRCK, BCK I/O Input Output
Table 1-1. LRCK, BCK Mode Setting
2. Master Clock System [Relevant pins] XTLI, XTLO, BFOT 768fs (fs = 44.1kHz) is assumed for the master clock system, and the connection is as shown below. (Please inquire with regard to use at other than fs = 44.1kHz.) (1) Master
O 384fs BFOT Frequency divider I XTLI 768fs O XTLO 768fs
(2) Slave
I XTLI 768fs
768fs
O OPEN XTLO
- 12 -
CXD2720Q
3. Input/Output Synchronization Circuit [Relevant pins] LRCK, XWO During normal operation, synchronization is performed automatically to input LRCK (in slave mode), and phase is matched with serial input data, but if there is a lot of jitter on LRCK, or during power input, synchronization may be impossible. In this case, forced synchronization can be done by making the XWO pin Low for 2/Fs or more. Forced synchronization operation is done by the timing of the second LRCK rising edge after the XWO pin is made Low. When synchronization is completed, return the XWO pin to High.
4. Reset Circuit [Relevant pins] XRST, XTLI, XTLO This LSI must be reset after power is turned ON. Reset is done by making the XRST pin Low for 1/Fs or more after supply voltage satisfies the recommended operating condition, and the crystal oscillator clock of the XTLI, XTLO pins or the external clock input from the XTLI pin is correctly applied.
5. Serial Audio Interface (SIF) [Relevant pins] SI, SO, BCK, LRCK, XS24, XMST Serial data is used for the external communication of the digital audio data. The CXD2720Q has one system each for input and output, and each one inputs/outputs 2 channels of data at 1 sampling cycles. Either the 32-bit clock mode or 24-bit clock mode can be selected. In master mode, the 32 bit clock mode is fixed. (1) Pin Configuration The pins shown in the table below are assigned to SIF. Pin name SI SO BCK LRCK XS24 XMST I/O I O I/O I/O I I Serial input; taken synchronized to BCK. Serial output; output synchronized to BCK. BCK input/output; either 32-bit clock mode (64fs) or 24-bit clock mode (48fs). BCK output supports 32-bit clock mode only. LRCK input/output (1fs). SI0 slot number (24/32) selection input. Low: 24-bit slot; High: 32-bit slot. Valid only in slave mode. Set High in master mode. BCK, LRCK master mode/slave mode switching input. Low: master mode; High: slave mode. Table 5-1. Pin Configuration Function
- 13 -
CXD2720Q
(2) Operation Modes The LRCK/BCK mode and SI/SO system settings can be selected by the setup register settings as follows. LRCK/BCK Mode Setting Setup register SQ11 SQ10 SQ09 Function LRCK format LRCK polarity selection BCK polarity selection relative to LRCK edge "0" : normal, "0" : Lch "H", "0" : edge, Contents "1" : IIS "1" : Lch "L" "1" : edge
Table 5-2. LRCK/BCK Mode Setting
SI/O System Register Setting SI system Setup register SQ08 SQ07 SQ06 SQ05 Function SI data list SI frontward/rearward truncation SI data word length SI data word length Contents "0" : MSB first, "1" : LSB first "0" : Forward truncation, "1" : Rearward truncation SQ06 SQ05 0 0 : 16 bit 1 1 : 24 bit
Table 5-3. SI System Register Setting
SO system Setup register SQ04 SQ03 SQ02 SQ01 Function SO data list SO forward/rearward truncation SO data word length Contents "0" : MSB first, "1" : LSB first "0" : Forward truncation, "1" : Rearward truncation SQ02 SQ01 0 0 : 16 bit 0 1 : 18 bit 1 0 : 20 bit 1 1 : 24 bit
Table 5-4. SO System Register Setting
- 14 -
CXD2720Q
(3) SIF Format Serial I/F have one input/output system each, and except for slot number, the following formats can be set for input and output, independently, by setting the setup register. It can also be made to support IIS format, to enable connection to Philips and other devices. The timing charts for each data format are given on the following pages. 32-bit slot (XS24 = High) SI format MSB first MSB first LSB first Setup register SQ05 SQ06 SQ07 SQ08 24 bit Forward truncation 16 bit Forward truncation 24 bit Rearward truncation 1 0 1 1 0 1 0 1 1 0 0 1 Supplement Supports 20, 16 bits Supports 20, 16 bits
Table 5-5. 32-bit Slot Serial IN
SI format MSB first MSB first MSB first MSB first MSB first LSB first 16 bit 18 bit 20 bit 24 bit 24 bit 24 bit
Setup register SQ01 SQ02 SQ03 SQ04 Rearward truncation Rearward truncation Rearward truncation Rearward truncation Forward truncation Rearward truncation 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1
Table 5-6. 32-bit Slot Serial OUT 24-bit slot (XS24 = Low) SI format MSB first MSB first LSB first Setup register SQ05 SQ06 SQ07 SQ08 16 bit Rearward truncation 24 bit 24 bit 0 1 1 0 1 1 Supplement

1
0 0 1
Supports 20, 16 bits for forward truncation Supports 20, 16 bits for rearward truncation
Table 5-7. 24-bit Slot Serial IN
SI format MSB first MSB first MSB first MSB first LSB first
Setup register SQ01 SQ02 SQ03 SQ04 16 bit Rearward truncation 18 bit Rearward truncation 20 bit Rearward truncation 24 bit 24 bit 0 1 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1

Table 5-8. 24-bit Slot Serial OUT Note 1) When performing 20-bit and 16-bit data input in serial IN 24-bit data format, fill the lower 4 and 8 bits with "0", respectively. Note 2) means "don't care". - 15 -
Digital Audio Data Input Timing (with polarities: SQ11 = 0, SQ10 = 0, SQ09 = 0)
32 bit slot Lch Rch
LRCK
BCK
* MSB first 24 bits forward truncation
Invalid 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 Invalid
23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
SI
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 Invalid
MSB * MSB first 16 bits rearward truncation MSB MSB MSB
Invalid
LSB
LSB
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Invalid
* LSB first 24 bits rearward truncation MSB LSB
LSB
LSB MSB
Invalid
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
LSB
- 16 -
Lch Rch
13 12 11 10 09 08 07 06 05 04 03 02 01 00 Invalid 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
24 bit slot
LRCK
BCK
* MSB first 16 bits rearward truncation LSB
13 12 11 10 09 08 07 06 05 04 03 02 01 00 23 22 21 20 19 18 17 16
Invalid
15
14
* MSB first 24 bits LSB MSB
10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01
MSB
MSB
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01
LSB
00
SI
23
22
21
20
19
18
17
16
15
14
MSB * LSB first 24 bits
LSB
02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
00
01
02
03
04
05
06
07
08
09
LSB
MSB LSB
MSB
CXD2720Q
Figure 5-1.
Digital Audio Data Output Timing (with polarities: SQ11 = 0, SQ10 = 0, SQ09 = 0)
32 bit slot Lch Rch
LRCK
BCK
* MSB first 16 bits rearward truncation
14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
15
* MSB first 18 bits rearward truncation
16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 17
MSB MSB MSB
19
LSB LSB LSB
23
LSB LSB LSB LSB
" 0 " truncation
17
16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
* MSB first 20 bits rearward truncationMSB
18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
19
18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
MSB SO * MSB first 24 bits rearward truncation MSB MSB LSB
" 0 " truncation
23
22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
MSB * MSB first 24 bits forward truncation LSB MSB
" 0 " truncation
23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
MSB * LSB first 24 bits rearward truncation MSB LSB
LSB
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
" 0 " truncation
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
- 17 -
Lch
13 12 11 10 09 08 07 06 05 04 03 02 01 00 15 14 13
LSB
MSB
24 bit slot LRCK
Rch
BCK
* MSB first 16 bits rearward truncation
12 11 10 09 08 07 06 05 04 03 02 01 00
15
14
MSB * MSB first 18 bits rearward truncation LSB
13 12 11 10 09 08 07 06 05 04 03 02 01 00
MSB
17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01
LSB
00
17
16
15
14
MSB * MSB first 20 bits rearward truncation
13 12 11 10 09 08 07 06 05 04 03 02 01 00
LSB
19
MSB
18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01
LSB
00
SO
13 12 11 10 09 08 07 06 05 04 03 02 01
19
18
17
16
15
14
MSB * MSB first 24 bits
LSB
00 23 22 21
MSB
20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01
LSB
00
23
22
21
20
19
18
17
16
15
14
MSB * LSB first 24 bits
10 11 12 13 14 15 16 17 18 19 20 21
LSB MSB
22 23 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22
LSB
23
00
01
02
03
04
05
06
07
08
09
LSB
MSB LSB
MSB
CXD2720Q
Figure 5-2.
CXD2720Q
6. Microcomputer Interface [Relevant pins] RVDT, TRDT, SCK, XLAT, REDY The CXD2720Q performs serial audio interface format setting, volume, coefficient settings of microphone echo delay amount and others by serial data from the microcomputer. Further, bidirectional communication such as internal data read from the CXD2720Q to the microcomputer can be done at the rate of once in 1 LRCK. (1) Pin Structure The five external pins indicated in the table below are allocated for microcomputer interface. Microcomputer interface begins operation when XLAT is received, so RVDT, TRDT, SCK and REDY are connected in common, and by controlling (wiring) only XLAT separately, multiple CXD2720Qs can be used. Pin name RVDT TRDT I/O I O Serial data input from microcomputer. Serial data output to microcomputer. High impedance state unless this pin is set to internal data read state by the microcomputer. Therefore, it is preferable to perform pull-up or pulldown so that potential is not unstable when this pin is not active. Shift clock for serial data. Input data from RVDT is taken according to SCK rise, and output data from TRDT is sent out according to SCK fall. Interprets the 8 bits of RVDT before this signal rises as transmission mode data, and the bits before that as address data. Transmission prohibited while at Low level. Transmission enabled at High. This pin is an open drain, and must be pulled up externally. Table 6-1. Microcomputer Interface External Pins Function
SCK XLAT REDY
I I O
- 18 -
CXD2720Q
(2) Description of Communication Formats The data transmission timing between the microcomputer interface and coefficient RAM and setup register is called the SV cycle, and is generated once in 1LRCK. The SV cycle is generated immediately preceding the signal processing program, so it has absolutely no effect on signal processing, and there is no risk of the sound being cut. In read/write modes, Address section + Mode section + Data section act as one package of data to perform data transmission between the microcomputer and the CXD2720Q. [Write] * For coefficient RAM
Address section (8 bits) RVDT A0 A7 Mode section (8 bits) M0 M7
Data section (16 bits)
D0 D15
SCK
XLAT
REDY
TRDT
[Read] * For coefficient RAM
Address section (8 bits) Mode section (8 bits) RVDT A0 A7 M0 M7
SCK
XLAT
REDY Data section (16 bits) TRDT D0 D15
Note) For both read and write, the data section is 24 bits for the setup register. Figure 6-1. Examples of Communication
- 19 -
CXD2720Q
(3) Data Structure Data structure is classified in three types, as shown in the table below. All data communication is done with LSB first. Name A0 to A7 M0 to M7 D0 to D15/SQ00 to SQ23 Bit length 8 8 16/24 Contents Address section Transmission mode section Data section Coefficient RAM is 16 bits; setup register is 24 bits Remarks
Table 6-2. Data Structure
(3)-1. Transmission Mode Section The transmission mode section is 8 bits and has the following functions. Bit M7 M6 M5 M4 M3 M2 M1 M0 VRD VS1 Data type VS0 Reserve Send/Receive 0: Receive 1: Send Note) Polarity as seen from the CXD2720Q Name XVMT SO Mute Reserve VS1 0 1 VS0 0 0 0: ON (No sound) 1: OFF Function
Setup register Coefficient RAM (K-RAM)
Table 6-3. Transmission Mode Section
(3)-2. Address Section The coefficient RAM has a 192-word structure, so the address section is 8 bits. The setup register has a 1word structure, so the address section data may be optional. (3)-3. Data Section Sixteen SCK are required, as the coefficient RAM has a 16-bit structure (D0 to D15). The setup register has a 24-bit structure (SQ00 to SQ23), so twenty-four SCK are required.
- 20 -
CXD2720Q
(4) Details of Communication Methods The definitions of signal timing required for control from the microcomputer are given below. (4)-1. Write First, address section data and mode section data are sent from the microcomputer, synchronized to SCK, to the RVDT pin. The address section data is 8 bits both for the coefficient RAM and setup register, and the setup register transmits optional data for 1 word length. Address section data is sent with LSB first. Mode section data is fixed at 8 bits regardless of content. The phase relationship between SCK and RV data (data applied to the RVDT pin) has the following restrictions: * RV data must be verified before SCK rise (tDS 20ns). * RV data must be held for 1t + 20ns or more after SCK rise (tDH). SCK itself has the following restrictions: * SCK Low level must be 1t+ 20ns or more (tSWL). * SCK High level must also be 1t + 20ns or more (tSWH). After raising SCK which corresponds to mode section final data, XLAT is raised (tSLP 20ns). XLAT Low level width must be maintained at 1t + 20ns or more (tLWL). Further, fall timing restrictions are: * for the preceding transmission, if REDY falls due to SCK, as for write, 3t + 20ns or more is required. (tSLD) * for the preceding transmission, if REDY falls due to XLAT, as for read, 20ns or more is required. (tLDR) Further, if preceding transmissions have been performed and REDY = Low, it is necessary to wait for REDY = High to raise XLAT. The procedure until this point is the same for write and read.
D0/SQ00 RVDT A0 tDS SCK tSWL XLAT tSLD or tLWH REDY tLDR TRDT High-Z tRLP tSBD tLDR tRLP tLWL tSLD tSWH tSLP tLSD tBSP tSLP A7 M0 tDH M7 SQ00 D15/SQ23 SQ23 A0 tSS M7
Figure 6-2. Write Timing
- 21 -
CXD2720Q
Data section write begins after XLAT rise, and here also transmission must be with LSB first, with tDS and tDH restrictions. In addition, after raising XLAT at the starting point for sending to the data section, wait for 3t + 20ns or more for the first SCK rise. (tLSD) When 16 bits (coefficient RAM) or 24 bits (setup register) of this write is repeated, REDY = Low within 4t + 50ns, and the microcomputer is informed of waiting status for the SV cycle, which is the dedicated data rewrite cycle by microcomputer interface. (tSBD) When REDY goes High again, the corresponding data is written. The next communication restarts by using the REDY signal as follows. * When REDY = Low, the SCK for the next transmission can rise (tBSP 20ns ). * In the same way, when REDY = Low, the XLAT for the next transmission can fall (tLDR 20ns). REDY will fall due to this transmission, but it is prohibited for XLAT to rise for the next transmission before the REDY rises. Be sure to raise the next XLAT after REDY falls (tRLP 20ns ). In order to restart the next transmission without using the REDY signal, the following conditions must be observed: * There should be 2t + 40ns or more left between the SCK rise for the final data section and the SCK rise for the next transmission (tSS). * In the same way, the XLAT for the next transmission can fall after waiting 3t + 20ns or more after the final data section SCK rise (tSLD). The tss and tSLD here are shorter times than tSBD 4t + 50ns, so the restriction conditions are not much strict. However, even in this case the rise of XLAT for the next transmission must come after REDY rise (tRLP 20ns). Further, the restriction for XLAT fall at the starting point of this write from tSLD can be: * tSLD 3t + 20ns if the preceding transmission was "write".
- 22 -
CXD2720Q
(4)-2. Read First, address section and mode section data are transmitted synchronized to SCK, and XLAT is raised matched with this; the procedure until this point is the same as for write, so the description is omitted here. Read differs from write in that after XLAT rise, REDY falls within 3t + 50ns (tLBD), and the microcomputer is informed of SV cycle waiting. At this time, the TRDT pin changes from high-impedance state to active state (tLDN 3t + 80ns) simultaneously with REDY fall. When the read data is ready, the REDY pin changes from Low to High. When the data read out from the TRDT pin is made TR, and SCK falls (tRSDP 20ns) when the REDY pin goes High, the first TR data is defined within 2t + 70ns (tSDD). The microcomputer reads this data at SCK rise. The TR data is read in order from the LSB with 16 bits for the coefficient RAM and 24 bits for the setup register by adding SCK, the corresponding data is all read, and then read is completed. Next, the method for restarting transmission after read is completed is described. As in Case 1, there is a method for sending address section and mode section data consecutively after reading all of the 16- or 24-bit data. There should be 2t + 40ns or more left between the SCK rise for the final data read and the next SCK rise (tss), and this is established by the conditions tSWL 1t + 20ns and tSWH 1t + 20ns. Further, at this read REDY changes from High to Low, but it is prohibited for the XLAT for the next transmission to fall before this. If REDY = Low has been verified, XLAT can fall (tLDR 20 ns). Also, while 16- or 24-bit data is being read from the TRDT pin, address and mode section data writing to the RVDT pin for the next transmission can be started. In Case 3, the final section of read data and the final data in the mode section overlap, and this allows shifting to the next transmission processing in the shortest possible time after data read. It is also possible to have data read and address and mode section write overlap partially, as shown by Case 2.
- 23 -
CXD2720Q
RVDT SCK
A0 tDS tSWL
A7 tDH
M0
M7
A0
A1
M7
tSWH
XLAT tSLD or tLWH REDY tLDR TRDT
tSLP tLWL tLBD tLDN tRLP tSDD
tRSDP
tSS tLDR
tSLP
tSDD SQ00 D0/SQ00
tSDD SQ22
tSDF SQ23
case1
D14/SQ22 D15/SQ23
RVDT SCK
A0 tDS tSWL
A7 tDH
M0
M7
A5
A6
M7
tSWH
XLAT tSLD or tLWH REDY tLDR TRDT
tSLP tLWL tLBD tLDN tRLP tSDD
tRSDP
tSS tLDR
tSLP
tSDD SQ00 D0/SQ00
tSDD SQ22
tSDF SQ23
case2
D14/SQ22 D15/SQ23
RVDT SCK
A0 tDS tSWL
A7 tDH
M0
M7
M7
tSWH
XLAT tSLD or tLWH REDY tLDR TRDT
tSLP tLWL tLBD tLDN tRLP tSDD
tRSDP tLDR tSDD SQ00 D0/SQ00 tSDD SQ22
tSLP
SQ23
case3
D14/SQ22 D15/SQ23
Figure 6-3. Read Timing
- 24 -
CXD2720Q
7. Setup Register When the setup register is selected for microcomputer interface transmission mode, the following settings are possible for serial audio interface and DAC. Data section bit SQ23 to 12 Reserve bit SQ11 SQ10 SQ09 LRCK format LRCK polarity selection BCK polarity selection relative to LRCK edge SI data list Control Must be Low for setup register setting change 0: normal 1: IIS 0: Lch High 1: Lch Low 0: Falling edge 1: Rising edge 0: MSB first 1: LSB first (24-bit rearward truncation) When system reset is Low All Low Normal Lch High Falling edge
SQ08
MSB first
SQ07
SI frontward/rearward truncation
0: Frontward truncation (valid only for MSB first/24 bits/32 slots) Frontward truncation 1: Rearward truncation SQ06 0 1 SQ05 0 1 : 16 bits : 24 bits 16 bits
SQ06, 05
SI data word length
SQ04 SQ03
SO data list SO frontward/rearward truncation
0: MSB first 1: LSB first 0: Frontward truncation 1: Rearward truncation SQ02 0 0 1 1 0: ON 1: OFF Table 7-1. SQ01 0 1 0 1 : 16 bits : 18 bits : 20 bits : 24 bits
LSB first Frontward truncation
SQ02, 01
SO data word length
16 bits
SQ00
DAC forced mute
ON
- 25 -
CXD2720Q
8. Coefficient RAM Setting When the coefficient RAM is selected in microcomputer interface transmission mode, the coefficient parameters such as each section's volumes and microphone echo delay amount can be set. Data settings other than those given following in Tables 8-1 and 8-2 are "don't care". (1) Fixed Values for System Initialization When the system is initialized, the coefficient RAM must be set at the fixed values, shown below, due to internal operation. Address 01H 02H 03H 0DH 12H 13H 14H 15H 16H 17H 19H 1AH 1BH 1DH 20H 21H 23H 24H 25H 26H 27H 28H 2DH 30H 32H 41H 46H 50H 58H Table 8-1. For Fs = 44.1kHz. Please inquire with regard to use at other than Fs = 44.1kHz, as the fixed values change. - 26 - Fixed value 68A9H 5121H 0000H 0000H 8B2AH 3BF7H 38DFH 4E77H 2E90H 0000H 0000H 2000H 4000H 4000H 0010H 4000H 4000H 1600H 2A00H 3FF0H 8000H 0000H 0008H 0000H 0000H 8000H 0000H 0008H 0008H
CXD2720Q
(2) Setting Data The relationships between the coefficient RAM and each function during DSP operation are as follows. Address 00H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0EH 0FH 10H 11H 18H 22H 2EH 31H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH 40H 42H 44H 45H Name Ki Ke KisLm KisRc KiaLm KiaRc KisRm KisLc KiaRm KiaLc DC1sw DC1f0 PL PR Kvc nRpR Ks Kimc DC2f0 DC2sw PEQa PEQb1 PEQb2 PEQg HC1a1 HC1a0 HC1b Kdry Keff KLm KRm KLo KRo Tdo Kre Function SI data input level control De-emphasis ON/OFF SI CH1 data Lch mix SI CH2 data Lch mix ADC CH1 data Lch mix ADC CH2 data Lch mix SI CH2 data Rch mix SI CH1 data Rch mix ADC CH2 data Rch mix ADC CH1 data Rch mix DC cut1 ON/OFF for accompaniment DC cut1 cut-off frequency for accompaniment Panpot volume for voice cancellation Panpot volume for voice cancellation Voice cancelling ON/OFF Pitch ratio for accompaniment Key control ON/OFF for accompaniment Microphone input level control DC cut2 cut-off frequency for voice DC cut2 ON/OFF for voice PEQ coefficient for voice PEQ coefficient for voice PEQ coefficient for voice PEQ coefficient for voice High cut1 for voice High cut1 for voice High cut1 for voice Microphone input direct sound mix Microphone input echo mix Key control output Lch mix for accompaniment Key control output Rch mix for accompaniment System volume Lch System volume Rch Microphone echo delay amount Microphone echo read tap volume Setting value Refer to Table 12-1 for setting value ON/AC19H; OFF/0000H Refer to Table 12-1 for setting value Refer to Table 12-1 for setting value Refer to Table 12-1 for setting value Refer to Table 12-1 for setting value Refer to Table 12-1 for setting value Refer to Table 12-1 for setting value Refer to Table 12-1 for setting value Refer to Table 12-1 for setting value ON/4000H; OFF/0000H Refer to Table 14-1 for setting value Refer to Table 9-1 for setting value Refer to Table 9-1 for setting value ON/8000H; OFF/0000H Refer to Table 10-1 for setting value ON/8000H; OFF/0000H Refer to Table 12-1 for setting value Refer to Table 14-1 for setting value ON/4000H; OFF/0000H Refer to Table 14-4 for setting value Refer to Table 14-4 for setting value Refer to Table 14-4 for setting value Refer to Table 14-5 for setting value Refer to Table 14-2 for setting value Refer to Table 14-2 for setting value Refer to Table 14-2 for setting value Refer to Table 12-1 for setting value Refer to Table 12-1 for setting value Refer to Table 12-1 for setting value Refer to Table 12-1 for setting value Refer to Table 12-1 for setting value Refer to Table 12-1 for setting value Refer to Table 11-1 for setting value Refer to Table 12-2 for setting value
Table 8-2 (1). Coefficient RAM Setting Data (1/2) - 27 -
CXD2720Q
Address 47H 49H 4AH 4BH 4CH 4DH 53H 5AH 5BH
Name Tre Krd Kfb HC2a1 HC2a0 HC2b VnRpR Krmc Krmp
Function Microphone echo read tap address Microphone echo input sound mix Microphone echo reverberation sound mix Microphone echo high cut2 Microphone echo high cut2 Microphone echo high cut2 Voice pitch ratio Microphone input mix Voice pitch control output mix
Setting value Refer to Table 11-1 for setting value Refer to Table 12-1 for setting value Refer to Table 12-1 for setting value Refer to Table 14-3 for setting value Refer to Table 14-3 for setting value Refer to Table 14-3 for setting value Refer to Table 10-1 for setting value Refer to Table 12-1 for setting value Refer to Table 12-1 for setting value
Table 8-2. Coefficient RAM Setting Data (2/2) Refer to 13. DSP Signal Flow regarding the names.
9. Voice Canceller Settings [Relevant pins] PL (address = 10H), PR (address = 11H), Kvc (address = 18H) The vocal sound set at the center can be cancelled by setting Kvc = 8000H and PL, PR = 7000H. Voice canceling at other than center setting can be done by the panpot volume. Panpot volume value is PL for CH1, and PR for CH2, and at the center position they are both 0.857. When voice cancellation is OFF, set Kvc = 0000H and PL, PR = 0000H. PL and PR setting values are hexadecimal notation with D15 as MSB and D0 as LSB. PL 7000H 7000H 7000H 7000H 7000H 7000H 7000H 7000H PR 7000H 6000H 5000H 4000H 3000H 2000H 1000H 0000H CH2 Setting position center PL 7000H 6000H 5000H 4000H 3000H 2000H 1000H 0000H PR 7000H 7000H 7000H 7000H 7000H 7000H 7000H 7000H CH1 Setting position center
Table 9-1. Settings for Voice Canceller Panpot Volume
- 28 -
CXD2720Q
10. Key Controller Setting [Relevant coefficients] nRpR (address = 22H), Ks (address = 2EH), VnRpR (address = 53H), Krmp (address = 5BH) (1) Key Controller Pitch Ratio nRpR (D15,.....,D2) is a 2's complement format with a decimal point between D14 and D13, and sets the desired pitch ratio directly. (VnRpR has the same type of setting as nRpR.) nRpR = Dn x 2n-14
n=2 15
The expression range for the pitch ratio is: -2.0 nRpR 2.0 - 2-12 but for practical use it is: -0.5 nRpR 1.0 or 1 octave. Use within a range of half an octave is recommended for quality of sound, although it depends on the aim and the source. Also, the algorithm is such that allophones will not be generated even when nRpR setting value is changed. (2) Notes on Key Controller OFF The pitch does not change when nRpR and VnRpR are set to 0000H (OFF) when the key controller is OFF, but depending on the internal state during OFF, there is no guarantee that the input value will be output as is. During OFF, after setting nRpR and VnRpR to 0000H (OFF), set the pitch control section to through state with the following settings. Accompaniment controller OFF: Ks = 0000H (OFF) Voice key controller OFF: sKrmp = 0000H (OFF)
- 29 -
CXD2720Q
(3) Examples of Key Controller Setting Examples of pitch ratio setting are illustrated below. nRpR setting values are hexadecimal notation with D15 as MSB and D2 as LSB for a total of 14 bits. (D1 and D0 can be optional data.) CENT 0 +50 +100 +150 +200 +250 +300 +350 +400 +450 +500 +550 +600 +650 +700 +750 +800 +850 +900 +950 +1000 +1050 +1100 +1150 +1200 nPpR 0000H 01E0H 03CEH 05CAH 07D6H 09F1H 0C1BH 0E56H 10A2H 12FFH 156EH 17EEH 1A82H 1D29H 1FE4H 22B3H 2597H 2892H 2BA2H 2EC9H 3208H 3560H 38D0H 3C5BH 4000H CENT 0 -50 -100 -150 -200 -250 -300 -350 -400 -450 -500 -550 -600 -650 -700 -750 -800 -850 -900 -950 -1000 -1050 -1100 -1150 -1200 nPpR 0000H FE2EH FC69H FAB1H F905H F765H F5D2H F44AH F2CCH F15AH EFF3H EE95H ED42H EBF8H EAB8H E980H E852H E72CH E60EH E4F9H E3ECH E2E6H E1E8H E0F1H E000H
Table 10-1. Pitch Ratio Setting Examples The numeric representation format for pitch ratio here is: nRpR = Dn x 2n-14
n=2 15
The numeric representation range is: -2.0 nRpR 2.0 - 2-12 Also, the relationship formula with music word cent value C is:
C
nRpR = 2 1200 - 1, C = 1200 log2 [nRpR + 1] [cent] The semitone at average ratio is 100 [cent]. - 30 -
CXD2720Q
11. Microphone Echo Delay Amount Setting [Relevant coefficients] Tdo (address = 44H), Tre (address = 47H) Microphone echo delay amount can be varied by setting coefficient Tdo (12 bits from D14 to D3) values. The relationships between the coefficient and the delay amount are shown in Table 11-1. Coefficient Tre (12 bits from D14 to D3) is microphone input echo initial delay time. Set in the range of 0008H to Tdo. Setting value Tdo 0008H 0010H 0018H * * * * 7ff0H 7ff8H 0000H Delay (fs = 44.1kHz) 0.045ms * * * * * * * * 185.76ms
4096step
0.045 ms/step setting possible
Table 11-1. Microphone Echo Delay Amount Setting
When Fs = 44.1kHz. Please inquire with regard to use at other than Fs = 44.1kHz, as the delay amount changes.
- 31 -
CXD2720Q
12. Input/Output Level Settings [Relevant coefficients] Ki (address = 00H), KisLm (address = 05H), KisRc (address = 06H), KiaLm (address = 07H), KiaRc (address = 08H), KisRm (address = 09H), KisLc (address = 0AH), KiaRm (address = 0BH), KiaLc (address = 0CH), Kimc (address = 31H), Kdry (address = 3CH), Keff (address = 3DH), KLm (address = 3EH), KRm (address = 3FH), KLo (address = 40H), KRo (address = 42H), Kre (address = 45H), Krd (address = 49H), Kfb (address = 4AH), Krmc (address = 5AH), Krmp (address = 5BH) The input/output levels and volumes are 2's complement format with a decimal point between D15 and D14, and hexadecimal notation with D15 as MSB and D0 as LSB. The coefficient and level relationships are as follows. D15 to D0 8000H FFFFH 0000H Level 0dB -90.31dB - D15 to D0 8000H FFFFH 0000H Level +12.04dB -78.27dB -
Table 12-1. Input/Output Level Settings (other than Kre)
Table 12-2. Input/Output Level Settings (Kre)
The input/output levels for 8001H to FFFEH are determined by the following formulas. (Coefficient value) = [ (-1) x D15 + Dn x 2n-15] x (-1)
n=0 14
for other than Kre
(Coefficient value) = [ (-1) x D15 + Dn x 2n-15] x (-4)
n=0
14
for Kre
Input/output level = 20 log [coefficient value] dB D15 to D0 are negative values, but the calculation is (-1) x (D15 to D0).
- 32 -
13. DSP Signal Flow
-Kimc 31H Pitch Control 5BH 53H 5AH -Krmp -Krmc
MIC
ADC
Decimation
DC Cut2 33H 34H
35H 36H PEQ 37H 38H
39H High Cut1 3AH 3BH
-Kfb 4AH
Delay Line High Cut2 4BH 4CH 4DH Tre 47H 45H Over Sampling 3DH -Keff -Kre 44H Tdi Tdo
-Krd Down Sampling 49H
- 33 -
-Kdry 3CH 05H -KisLm 06H -KisRc 07H -KiaLm 08H -KiaRc 10H Voice Cancel 11H 18H 09H -KisRm 0CH -KiaLc 0BH -KiaRm Pitch Control -KLm Pitch Control 3EH 22H 2EH -KRm 3FH 0AH -KisLc
-Ki
SI1
04H DeEmphasis
-Ki 00H
SI2
DeEmphasis -KLo SO1 40H Over Sampling -KRo SO2 42H Over Sampling DAC DA2 DAC DA1
AD1
ADC
Decimation
DC Cut1
AD2
ADC
Decimation
DC Cut1 0EH 0FH
CXD2720Q
Refer to the coefficient RAM setting for information on each coefficient.
CXD2720Q
14. Filter Coefficient Table [Relevant coefficient] DC1f0 (address = 0FH), DC2f0 (address = 33H), HC1b (address = 3BH), HC1a1 (address = 39H), HC1a0 (address = 3AH), HC2b (address = 4DH), HC2a1 (address = 4BH), HC2a0 (address = 4CH), PEQa (address = 35H), PEQb1 (address = 36H), PEQb2 (address = 37H), PEQg (address = 38H) The cut-off frequencies and PEQ gain, Q, and center frequency settings for each signal flow filter are shown in Tables 13-1 to 13-5. Note that if the above setting values are changed during DSP operation, the output level becomes unstable for several 1/fs. Tables 14-1 to 14-5 and digital de-emphasis are given for fs = 44.1kHz. Please inquire with regard to using an fs other than this value. (1) DC Cut1 for Accompaniment/ DC Cut2 for Voice Cut-off frequency (Hz) 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 DC1f0 DC2f0 7FA2 7F74 7F45 7F17 7EE9 7EBA 7E8C 7E5E 7E30 7E02 7DD4 7DA6 7D78 7D4B 7D1D 7CEF 7CC2 7C94 7C67 7C39 7C0C 7BDF 7BB2 7B85 7B58 Cut-off frequency (Hz) 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 DC1f0 DC2f0 7B2B 7AFE 7AD1 7AA4 7A77 7A4B 7A1E 79F1 79C5 7998 796C 7940 7914 78E7 78BB 788F 7863 7837 780B 77DF 77B4 7788 775C 7731 7705 Table 14-1. Cut-off frequency (Hz) 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 DC1f0 DC2f0 76D9 76AE 7683 7657 762C 7601 75D6 75AB 7580 7555 752A 74FF 74D4 74A9 747E 7454 7429 73FF 73D4 73AA 737F 7355 732B 7301 72D6 Cut-off frequency (Hz) 770 780 790 800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 1000 DC1f0 DC2f0 72AC 7282 7258 722E 7204 71DB 71B1 7187 715D 7134 710A 70E1 70B7 708E 7064 703B 7012 6FE9 6FBF 6F96 6F6D 6F44 6F1B 6EF2
- 34 -
CXD2720Q
(2) High Cut1 for Voice Cut-off frequency (Hz) 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 HC1b 6EF2 6D5C 6BCB 6A3E 68B6 6733 65B4 6439 62C3 6150 5FE2 5E77 5D11 5BAE 5A4E 58F2 579A 5645 54F3 53A4 5259 5110 4FCB 4E88 4D48 4C0B 4AD0 4998 4863 4730 4600 44D2 43A6 427C 4155 4030 3F0D 3DEC 3CCD 3BAF 3A94 397B 3863 374D 3639 3527 HC1a1 0886 0951 0A1A 0AE0 0BA4 0C66 0D25 0DE3 0E9E 0F57 100E 10C4 1177 1228 12D8 1386 1432 14DD 1586 162D 16D3 1777 181A 18BB 195B 19FA 1A97 1B33 IBCE 1C67 1CFF 1D96 1E2C 1EC1 1F55 1FE7 2079 2109 2199 2228 22B5 2342 23CE 2459 24E3 256C HC1a0 F77A F6AF F5E6 F520 F45C F39A F2DB F21D F162 F0A9 EFF2 EF3C EE89 EDD8 ED28 EC7A EBCE EB23 EA7A E9D3 E92D E889 E7E6 E745 E6A5 E606 E569 E4CD E432 E399 E301 E26A E1D4 E13F E0AB E019 DF87 DEF7 DE67 DDD8 DD4B DCBE DC32 DBA7 DB1D DA94 Cut-off frequency (Hz) 5600 5700 5800 5900 6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000 8100 8200 8300 8400 8500 8600 8700 8800 8900 9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000 OFF HC1b 3416 3306 31F9 30EC 2FE2 2ED8 2DD0 2CCA 2BC4 2AC0 29BD 28BC 27BB 26BC 25BD 24C0 23C4 22C9 21CF 20D5 1FDD 1EE6 1DEF 1CF9 1C04 1B10 1A1C 192A 1838 1746 1655 1565 1475 1386 1298 11A9 10BC 0FCF 0EE2 0DF5 0D09 0C1E 0B32 0A47 095C 0000 HC1a1 25F4 267C 2703 2789 280E 2893 2917 299A 2A1D 2A9F 2B21 2BA1 2C22 2CA1 2D21 2D9F 2E1D 2E9B 2F18 2F95 3011 308C 3108 3183 31FD 3277 32F1 336A 33E3 345C 34D5 354D 35C5 363C 36B3 372B 37A1 3818 388E 3905 397B 39F0 3A66 3ADC 3B51 0000 HC1a0 DA0C D984 D8FD D877 D7F2 D76D D6E9 D666 D5E3 D561 D4DF D45F D3DE D35F D2DF D261 D1E3 D165 D0E8 D06B CFEF CF74 CEF8 CE7D CE03 CD89 CD0F CC96 CC1D CBA4 CB2B CAB3 CA3B C9C4 C94D C8D5 C85F C7E8 C772 C6FB C685 C610 C59A C524 C4AF 8000
Table 14-2.
- 35 -
CXD2720Q
(3) High Cut2 for Microphone Echo Cut-off frequency (Hz) 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 HC2b 5FE2 5D11 5A4E 579A 54F3 5259 4FCB 4D48 4AD0 4863 4600 43A6 4155 3F0D 3CCD 3A94 3863 3639 3416 31F9 2FE2 2DD0 2BC4 29BD 27BB 25BD 23C4 21CF 1FDD 1DEF 1C04 1A1C 1838 1655 1475 1298 10BC 0EE2 0D09 0B32 095C 0788 05B3 03E0 020D 003A HC2a1 100E 1177 12D8 1432 1586 16D3 181A 195B 1A97 1BCE 1CFF 1E2C 1F55 2079 2199 22B5 23CE 24E3 25F4 2703 280E 2917 2A1D 2B21 2C22 2D21 2E1D 2F18 3011 3108 31FD 32F1 33E3 34D5 35C5 36B3 37A1 388E 397B 3A66 3B51 3C3B 3D26 3E0F 3EF9 3FE2 HC2a0 EFF2 EE89 ED28 EBCE EA7A E92D E7E6 E6A5 E569 E432 E301 E1D4 E0AB DF87 DE67 DD4B DC32 DB1D DA0C D8FD D7F2 D6E9 D5E3 D4DF D3DE D2DF D1E3 D0E8 CFEF CEF8 CE03 CD0F CC1D CB2B CA3B C94D C85F C772 C685 C59A C4AF C3C5 C2DA C1F1 C107 C01E Cut-off frequency (Hz) 5600 5700 5800 5900 6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000 8100 8200 8300 8400 8500 8600 8700 8800 8900 9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000 OFF HC2b FE68 FC95 FAC2 F8EE F719 F543 F36C F194 EFBB EDE0 EC02 EA23 E841 E65D E476 E28C E09F DEAE DCBA DAC1 D8C5 D6C4 D4BE D2B3 D0A3 CE8E CC72 CA50 C828 C5F9 C3C2 C184 BF3E BCEF BA98 B837 B5CC B357 B0D7 AE4C ABB5 A911 A660 A3A1 A0D4 0000 HC2a1 40CC 41B5 429F 4389 4473 455E 464A 4736 4822 4910 49FF 4AEE 4BDF 4CD1 4DC5 4EBA 4FB0 50A9 51A3 529F 539D 549E 55A1 56A6 57AE 58B9 59C7 5AD8 5BEC 5D03 5E1F 5F3E 6061 6188 62B4 63E4 651A 6654 6794 68DA 6A25 6B77 6CD0 6E2F 6F96 0000 HC2a0 BF34 BE4B BD61 BC77 BB8D BAA2 B9B6 B8CA B7DE B6F0 B601 B512 B421 B32F B23B B146 B050 AF57 AE5D AD61 AC63 AB62 AA5F A95A A852 A747 A639 A528 A414 A2FD A1E1 A0C2 9F9F 9E78 9D4C 9C1C 9AE6 99AC 986C 9726 95DB 9489 9330 91D1 906A 8000
Table 14-3.
- 36 -
CXD2720Q
(4) PEQ for Voice Center frequency (Hz) 250.0 280.6 315.0 353.6 396.9 445. 4 500. 0 561.2 630.0 707.1 793.7 890.9 1000. 0 1122.5 1259.9 1414.2 1587.4 1781.8 2000.0 2244.9 2519.8 2828.4 3174.8 3563.6 4000.0 4489.8 5039.7 5656.9 6349.6 7127.2 8000.0 PEQa 023D 0282 02CF 0325 0385 03F0 0467 04EC 0580 0624 06DB 07A6 0886 097E 0A91 0BC0 0D0D 0E7C 100E 11C7 13A8 15B5 17F1 1A5E 1CFF 1FD8 22ED 2642 29DB 2DC1 31FD PEQb1 7DAE 7D64 7D10 7CB2 7C47 7BCF 7B48 7AAE 7A01 793D 785E 7762 7643 74FD 738B 71E5 7004 6DE0 6B6D 68A1 656E 61C6 5D97 58CF 535A 4D24 4617 3E23 353B 2B5C 2097 PEQb2 847B 8505 859F 864B 870B 87E1 88CF 89D9 8B01 8C4A 8DB7 8F4D 910E 92FE 9524 9781 9A1C 9CFA A01E A38F A752 AB6C AFE4 B4BE BA00 BFB2 C5DC CC85 D3B8 DB84 E3FC Gain (dB) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 PEQg 0000 01E5 03E7 0608 0849 0AAC 0D33 0FE1 12B7 15B8 18E7 1C46 1FD9 23A1 27A3 2BE2 3061 3524 3A30 3F88 4531 4B30 518A 5844 5F64
Table 14-5.
Table 14-4.
- 37 -
CXD2720Q
Filter Characteristics ADC Filter Characteristics (43rd + 15th FIR)
Pass band
500.00 400.00 300.00 200.00 0.00 -10.00 -20.00 -30.00
Stop band
Response [dB x 10-3]
100.00 0.00 -100.00 -200.00 -300.00 -400.00 -500.00 -600.00 -700.00 -800.00 0 5 10 Frequency [kHz] 15 20
Response [dB]
-40.00 -50.00 -60.00 -70.00 -80.00 -90.00 -100.00 1fs Frequency [kHz] 2fs
DAC Filter Characteristics (43rd + 7th FIR)
Pass band
500.00 400.00 300.00 200.00
Stop band
0.00 -10.00 -20.00 -30.00
Response [dB x 10-3]
100.00
Response [dB]
0.00 -100.00 -200.00 -300.00 -400.00 -500.00 -600.00 -700.00 -800.00 0 5 10 Frequency [kHz] 15 20
-40.00 -50.00 -60.00 -70.00 -80.00 -90.00 -100.00 1fs Frequency [kHz] 2fs
- 38 -
Application Circuit
2 100p 22k 220p 7 3 220p 0.01 AGND 4 AGND AGND AGND 4 330k 10k CH2 OUT 22k 39k AGND AGND 12k 5 100p 6 39k 1 AGND 1000p 10k 2 8 10 12k 0.01
1
: AD operational amplifier +12V power supply
2
: DA operational amplifier +12V power supply
3
: AD operational amplifier -12V power supply
4
: DA operational amplifier -12V power supply
A
: Crystal oscillator circuit +5V power supply
B AGND AGND DGND F 0.01 6 7 3 1200p 0.01 AGND 3 AGND AGND 4 1.8k 1 CH2 IN 5 100k AGND 2200p 1.8k 2 8 AGND 1M 10 4.7k 0.01 0.01 0.01 44 42 VSS3 AIN2 AVS5 AVS2 XVSS XTLI AVD5 AVD2 XVDD AO2P AO2N XTLO 0.01 B AGND 1 AGND 0.01 AO1N 26 AO1P 25 7 1200p 0.01 AGND AGND 3 AGND 1.8k AVD4 24 AVD3 23 AGND AGND AIN3 22 AVS3 21 VSS2 20 TST5 19 100p 22k 220p TST2 16 CXD2720Q TST1 15 39k TST0 14 DGND AGND AGND XS24 13 DGND SO 12 VDD0 11 VSS1 10 DGND XRST XWO CH3 IN 6 5 100k AGND AGND 4 3 VSS0 AVS0 VDD3 AVD0 2 1 NC DGND 2 7 1.8k 3 1200p 0.01 AGND AGND 3 AGND 2200p 1.8k 8 4 1 0.01 AGND 10 4.7k 1M XRST XWO TRDT 7 6 5 REDY XLAT SCK RVDT 8 9 0.01 DGND 1 22k 12k 5 100p 12k 6 39k 2 7 10k 3 220p 0.01 AGND AGND 4 AGND AGND 1000p 10k 8 4 1 0.01 AGND 10 CH1 OUT 330k TST4 18 TST3 17 0.01 AGND E AGND D AGND 5 100k 0.01 CH1 IN 6 3 2 2200p 1.8k 8 4 1 AGND 10 4.7k 1M AGND 41 39 31 NC VDD1 43 40 38 37 34 33 32 36 35 DGND AGND C 20p AGND AGND AGND 1
: AIN1 +5V power supply
C
: AIN2 +5V power supply
D
: AIN3 +5V power supply
E 20p AGND 768fs A 0.01
: AO1 +5V power supply
F
: AO2 +5V power supply
: Digital power supply + 5V
5532 operational amplifier used NC
50
49 48
47
46 45
51 NC AVD1 30 AIN1 29 AVS1 28 AVS4 27
52 NC
53 VSS4
DGND
54 NC
55 NC
56 NC
57 NC
58 NC
59 NC
60 NC
61 NC
NC
NC
NC
NC
NC
2
VSS7
XMST
SI
BCK
X768
BFOT
INVI
NC
NC
LRCK
NC
NC
81 82 86 87 88 90 89 91 92
83
84 85
93 94
NC
NC
NC
NC
NC 97
- 39 -
95 96 98 99 100 Microcomputer DGND 0.01 DGND 0.01 0.01 DGND DGND
62 NC
63 NC
64 NC
65 NC
66 NC
67 NC
68 NC
69 VSS5
DGND
70 VDD2
0.01
71 NC
DGND
72 NC
73 NC
74 NC
75 NC
76 NC
77 NC
78 NC
79 NC
80 VSS6
DGND
CXD2500Q
DGND
DGND
CXD2720Q
XTAI
SIN DA16 BCK DA15 LRCK LRCK
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
CXD2720Q
Package Outline
Unit: mm
100PIN QFP (PLASTIC)
+ 0.1 0.15 - 0.05
23.9 0.4 + 0.4 20.0 - 0.1
+ 0.4 14.0 - 0.01 17.9 0.4
15.8 0.4
A
0.65 0.12 M
+ 0.35 2.75 - 0.15
0.15
0 to 15 DETAIL A
0.8 0.2
(16.3)
PACKAGE STRUCTURE
PACKAGE MATERIAL SONY CODE EIAJ CODE JEDEC CODE QFP-100P-L01 QFP100-P-1420-A LEAD TREATMENT LEAD MATERIAL PACKAGE WEIGHT EPOXY RESIN SOLDER PLATING COPPER / 42 ALLOY 1.4g
- 40 -


▲Up To Search▲   

 
Price & Availability of CXD2720Q

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X